Bilimin En Büyük Deneyi - CERN |
3. Bölüm
Geçtiğimiz ayın sonlarında CERN'den yapılan açıklama belki de bugüne kadar yapılan en sansasyonel açıklamaydı. Açıklamada nötrinolarla yapılan deneylerde ışık hızının yaklaşık 6 km hız farkla geçildiği belirtiliyordu!
Öncelikle işe nötrinoları tanımakla başlayalım. Neredeyse kütlesiz bir parçacık olan nötrinoların karanlık madde çeşitlerinden biri olduğu düşünülüyor. Normal maddeyle etkileşimleri hemen hemen hiç yoktur, hatta şu an da muhtemelen içinizden trilyonlarcası akıp geçmektedir. Çevremizdeki bu nötrinoların en büyük kaynağıysa Güneş. Güneşteki her hidrojen yanmasında iki adet nötrino meydana geliyor, böylece Güneşteki sürekli yanma evrenimize trilyonlarca nötrino yayıyor. Bu maddenin en önemli özelliğiyse aldığı yol kadar değişime uğraması. 1960’ların sonlarında iki astrofizikçi Raymond Davis ve John N. Bahcall Homestake deneyinde dünyamıza gelen nötrinoları daha yakından inceleme amacıyla bir detektör kurdular. Bu detektörün amacı dünyamıza Güneş’ten bir günde gelen yaklaşık 10 katrilyon nötrinonun bir tanesini saptayabilmekti. Fakat üç günde bir nötrino ancak tespit edilebildi. 2000’li yıllara geldiğimizdeyse nötrinoların üç tür olduğu anlaşıldı. Yani Güneşten tek tür olarak çıkan nötrinolar dünyamıza gelene kadar değişim geçiriyorlardı (bu olaya nötrino salınımları denmektedir). Opera deneylerinde de amaç bu ikinci tür ve üçüncü tür geçişlerini incelemek.
Şekil 1. Dünyada ilk gözlemlenen nötrinonun fotoğrafı Nötrino İtalyanca çok küçük anlamına geliyor. Kendisine bu isim ünlü İtalyan fizikçi Enrico Fermi tarafından verilmiş. İtalya halen parçacık fiziğinde dünyada önde gelen ülkelerden biri. İtalyanların küçük bir yerleşim birimi olan Gran Sasso’daki laboratuar, dünyadaki en ünlü parçacık fiziği merkezlerinden.
Şekil 2. CERN Gran-Sasso laboratuarları arasında gerçekleşen Opera deneyinde 730 km’lik bir düz tünelde nötrinoların geçişi kaydediliyor. Giriş ve çıkış zamanları ileri teknolojik donanıma sahip cihazlarla ölçüldüğünde nötrinoların hızlarının ışık hızının yirmide biri kadar daha hızlı olduğu ortaya çıkıyor.
Tür geçişlerini anlamak için şöyle bir örnek verelim. Elinizde toplam 3 çeşit renkte siyah, beyaz ve gri top olsun. Beyaz topu, yani beyaz nötrinoyu ışık hızına yakın bir hızda İstanbul’dan CERN’e gönderirsek topumuz gri veya siyah olarak CERN’e ulaşacaktır. Daha uç bir örnek verecek olursak, eğer maddeden değil de karanlık madde olduğunu tahmin ettiğimiz nötrinolardan oluşmuş olsaydık uzaydan geri dönen astronotların akıbetini birazda sizin hayal gücünüze bırakıyorum.
Peki ya gerçektende ışık hızını aşmış olabilir miyiz? Zamanda yolculuk yaparak bu soruya mantıklı bir cevap aramak şimdilik bana kulağa en mantıklı gelen fikirmiş gibi geliyor.
Şekil - 3 Işık Konisi. Dünya üzerinde gözlemlediğimiz bütün hareketler ışık konisi içinde bir doğruda temsil edilir. Dünya çizgileri olarak nitelendirilen bu doğrular (şekilde konum zaman eğrisi) hiçbir zaman parçacığın bu doğru üzerinde hareket ettiği anlamını taşımaz, sadece hareketin ışık hızından daha düşük hızlarda gerçekleştiğini gösterir. Koninin içindeki hareketler daima neden-sonuç ilkesini sağlarken nötrino, eğer geçekten ışıktan hızlı ise, bu genel ilkeye uymayarak hareket ediyor demektir. Dünya çizgilerinin harita düzlemi üzerindeki izdüşümü, parçacığın yer küre üzerinde nereden nereye gittiğini, zaman ekseni üzerindeki izdüşümü ise yolculuğun ne kadar zaman içersinde yapıldığını belirtir. Zaman eksenindeki ok zamanın akış yönünü gösterir.
Şimdi olayı biraz somutlaştıralım. Şekil 4’deki her nokta gerçekleşen bir olaya denk gelir. A noktası sizin bu yazıyı okuma anınızı temsil etsin. A noktasından B noktasına bu bilgiyi ışık hızını geçen nötrino iletsin. Sinyal görüldüğü gibi gelecek zamanı belirleyen ışık konisinin içinde yer almaz çünkü ışıktan daha hızlı hareket etmektedir. Üst koninin gelecek alt koninin geçmiş bir diğer deyişle üst koninin sonuçları alt koni nedenleri içerdiğini düşünürsek, zaman mekan kavramı ilişkisi gereği nötrinomuzun sinyali AB’ olarak yansır. Yani sinyalin taşıdığı bilgileri gözlemleyen koordinat sistemi A olayı gerçekleşmeden bu olayı C anında görür. Bunun anlamı aslında sizin bu yazıyı okuyacağınızı bilmemiz anlamına gelir.
Şekil -4 Zaman ve uzay ilişkisinin koordinat sisteminde modellenmesi
Geleceği görmenin ilk koşulu bu fiziksel sinyalin gerçekleşmesi gibi duruyor. CERN’den yapılan açıklamada sonuçların 15.000 defa tekrarlandığı, hata ihtimalinin üzerinde sıklıkla durulsa da herhangi bir hataya rastlanılmadığı özellikle belirtiliyor. Şimdi sonuçların Amerika ve Japonya’daki merkezlerde teyit edilmesi bekleniyor. CERN uzmanları da kendilerini de şaşırtan bu sonuca temkinli yaklaşıyorlar. Deneyin başkanı Antonio Ereditat’ın sözleri CERN’in bakış açısını özetle nitelikte. “Şimdilik hiç bir şey iddia etmiyoruz. Toplumun bu çılgın sonucu anlamakta yardımcı olmasını istiyoruz - çünkü bu çılgınlık ve elbette sonuçları da çok ciddi olabilir."
CERN başarılı ve sistemli bir çalışmayla modern fiziğin son on yıldaki en büyük destekleyicisi olmakta kalmadı, bilimsel çalışmalar yönünden Amerika ve Japonya’dan bir adım geri kalan Avrupa’ya önemli bir dinamizm getirdi. Şu an gerçekleştirilen deneylerin önümüzdeki 15 -20 yıl daha sürmesinin bekleniyor olması CERN’nin daha uzun süre konuşulacağını gösteriyor. Peki tüm bu gelişmelerin, ilerlemelerin, keşiflerin sınırı ne olmalı? Cevabı yine en güzel Einstein veriyor: “Dünyada tek bir çocuk dahi mutsuz olduğu sürece, büyük icatlar ve ilerlemeler yoktur.”
KAYNAKLAR
►http://abyss.uoregon.edu/~js/ast123/lectures/lec22.html
►http://bigthink.com/ideas/40441?page=all
►http://www.bilimania.com/haber/505/hizli-notrinolar-ve-zamanda-yolculuk
- Dünyanın En Görkemli 10 Güneş Tarlası
- Dünyanın En Büyük 10 Makinesi
- 2020’nin En İyi 10 Kişisel Robotu
- Programlamaya Erken Yaşta Başlayan 7 Ünlü Bilgisayar Programcısı
- Üretimin Geleceğinde Etkili Olacak 10 Beceri
- Olağan Üstü Tasarıma Sahip 5 Köprü
- Dünyanın En İyi Bilim ve Teknoloji Müzeleri
- En İyi 5 Tıbbi Robot
- Dünyanın En Zengin 10 Mühendisi
- Üretim için 6 Fabrikasyon İşlemi
- DrivePro Yaşam Döngüsü Hizmetleri
- Batarya Testinin Temelleri
- Enerji Yönetiminde Ölçümün Rolü: Verimliliğe Giden Yol
- HVAC Sistemlerinde Kullanılan EC Fan, Sürücü ve EC+ Fan Teknolojisi
- Su İşleme, Dağıtım ve Atık Su Yönetim Tesislerinde Sürücü Kullanımı
- Röle ve Trafo Merkezi Testlerinin Temelleri | Webinar
- Chint Elektrik Temel DIN Ray Ürünleri Tanıtımı
- Sigma Termik Manyetik Şalterler ile Elektrik Devrelerinde Koruma
- Elektrik Panoları ve Üretim Teknikleri
- Teknik Servis | Megger Türkiye