Sonsuzu Anlayabilmek |
1. Bölüm
Sonsuz sembolü ile matematik ve fizik bilimlerinde çok sık karşılaşıyoruz. 'Sonsuz' kavramı ilk zamanlardan bu yana büyük paradokslara neden olmuştur. Kimse sonsuza kadar yaşayamaz, kimse 1’den sonsuza kadar sayamaz, hiçbir şey sonsuza kadar çalışamaz. Peki nedir bu sonsuz?
13.07.2014 tarihli yazı 12626 kez okunmuştur.
Sonsuz kavramı, insan aklının sınırlarının dışına çıktığı için büyük bir ilgi konusudur. Bu nedenle de sonunun olup-olmadığını bilmediğimiz terimlerin ve varlıkların sonsuz olduğunu söyleriz. Tıpkı evrenin sonunun olup-olmadığını bilmememize rağmen, sonsuz olduğunu kabul etmemiz gibi. Einstein'ın sonsuzluk ile ilgili "İki şey sonsuzdur; insanoğlunun aptallığı ve evren. Fakat ikincisinden çok emin değilim." sözü aslında bu kavramı çok iyi açıklıyor.
Sonsuz kavramını matematik, fizik ve felsefe konularında ayrı ayrı incelemek daha doğrudur. Bu ilk bölümümüzde matematiksel sonsuz kavramından bahsedelim.
Matematiksel Sonsuz
Matematiksel boyuttaki sonsuz kavramı ele alındığında genellikle sayılamayacak mertebede büyük sayı ile ilişkilendirilir. Sonsuzluk ise sonsuzların oluşturduğu, sınırı olmayan şeydir. Bir sayı ne kadar büyürse büyüsün, mutlak sonsuza hep uzak kalacaktır. ‘Sonsuz’ konusu, insan aklının sınırlarını aşan soyut bir nitelik olduğu için büyük paradokslara neden olmuştur. Georg Conter’ın kümeler kuramı, bu konuya büyük bir açıklık getirmiştir. Conter’ın kuramı, sonsuzu anlamaya çalışmak yerine, sonluyu anlamaya çalışmaya dayanıyordu. Yani sonlunun ne anlama geldiğini anlarsak, sonsuzun da ne anlama geldiğini anlarız fikrini ortaya koymuştu. Peki sonlu diye bir şey var mıydı? Dolayısıyla da sonsuz diye bir şey var mıydı?
►İlginizi Çekebilir: Zaman Herkes İçin Farklı Mı İşliyor?
Matematikte adına sonlu denilen terim olmadığı gibi sonsuz denilen bir terim de yoktur. Matematikte sonsuz bir sıfattan ibarettir. Tıpkı ‘Büyük Havuz’ söz öbeğindeki büyük kelimesinin havuz kelimesini nitelemesi gibidir.
Matematiksel sonsuz kavramında karışıklık yaşanmasınının bir diğer nedeni de farkında olmadan ona bir sayıymış gibi davranmamızdan kaynaklanıyor. 'Limit n sonsuza giderken' cümlesini limit problemlerinde çok sık kurarız. Ancak burada n'nin sonsuza gittiğini söylemek yerine 'n sürekli artarken' demek daha doğru bir ifadedir. Limit konusundan bahsetmişken şimdi A ve B diye iki nokta ele alarak bu konuyu somutlaştıralım. A noktasından B'ye varmak için hareketine başlayan bir kişi önce yolun yarısını, sonra kalan yolun yarısını, sonra tekrar yarısını alacak şekilde hareket ettiğinde B'ye varamayacak, bu noktaya sadece yakınsayacaktır. Çünkü kalan yolun yarısını almaya devam ettiği sürece hiç durmayacak, gitmesi gereken hep yarım bir yol kalacaktır. Ancak fiziksel olarak ise böyle bir durum mümkün değildir. Fizikte ise A'daki hareketli bir şekilde B'ye varacaktır. Zenon Paradoksu'nun açıklamasını veren bu örnek, matematik ve fizikteki sonsuz kavramının ayrıldığı en belirgin noktadır.
►İlginizi Çekebilir: Matematiksel İmkansızlıklar
Sonsuzluk ile ilgili bir diğer paradoks ise doğru parçaları ile ilgilidir. Şimdi bizim bir doğru parçamız olsun. Bu doğru parçasının üzerinde sonsuz nokta var. Doğrunun boyutunu 10 kat arttırdığımızda üzerinde yine sonsuz nokta var. Biz bu doğru parçasının boyutunu arttırdık ve bu yüzden bir şeylerin değişmesi gerekmez miydi? Farklı sonsuzlar mümkün müydü?
Yani sonsuz+1=sonsuz eşitliğindeki iki sonsuz da birbirine eşit miydi? Matematikte bu sorunun açıklaması olan, farklı sonsuzlar paradoksunun cevabını ise Hilbert Oteli'nde bulabiliriz.
Hilbert Oteli
Matematiksel sonsuzu günlük sonsuzla anlamamızın en iyi yolu Hilbert’in farazisidir. Hilbert Oteli’nde numaralandırılması 1’den başlayan ve 1,2,3.. şeklinde sonsuz sayıda oda var. Bu otele sonsuz sayıda koltuğu olan ve tüm koltukları dolu olan bir otobüs geliyor ve yolcular odalara yerleşiyor. Yerleşim işlemi birebir olarak, eksiksiz ve fazlasız olarak gerçekleşir. Ancak bu otele bu otobüsten bir tane daha gelirse ne olacak?
Burada genellikle sonsuza bir sayıymış gibi yaklaşıldığı için "İki otobüs yolcu bu otele yerleşemez." cevabı verilir ancak Hilbert Oteli’nde tüm misafirlere yer var. Nasıl mı?
►İlginizi Çekebilir: Matematiğin Sihri: "Mathemagic" | Ted- Hikayeleri
İlk gelen otobüsteki yolcuları sırası ile 1,2,3… numaralı odalara yerleştirmiştik. Şimdi yeni müşteriler geldi. Yeni müşterilerin odalara yerleşebilmesi için odalardaki müşterilerden oda numaralarının iki katı olan numaradaki odaya taşınmalarını isteyelim. Yani 1 numaradaki 2 numaraya, 2 numaradaki 4 numaraya, 3 numaradaki 6 numaraya şeklinde. Şimdi tek sayılı odalar boş kaldı. Yeni misafirler bu odalara eksiksiz ve fazlasız bir şekilde yerleşebilirler.
Kaynak:
►Wikipedia
►Tutorial
YORUMLAR
Aktif etkinlik bulunmamaktadır.
- Dünyanın En Görkemli 10 Güneş Tarlası
- Dünyanın En Büyük 10 Makinesi
- 2020’nin En İyi 10 Kişisel Robotu
- Programlamaya Erken Yaşta Başlayan 7 Ünlü Bilgisayar Programcısı
- Üretimin Geleceğinde Etkili Olacak 10 Beceri
- Olağan Üstü Tasarıma Sahip 5 Köprü
- Dünyanın En İyi Bilim ve Teknoloji Müzeleri
- En İyi 5 Tıbbi Robot
- Dünyanın En Zengin 10 Mühendisi
- Üretim için 6 Fabrikasyon İşlemi
- DrivePro Yaşam Döngüsü Hizmetleri
- Batarya Testinin Temelleri
- Enerji Yönetiminde Ölçümün Rolü: Verimliliğe Giden Yol
- HVAC Sistemlerinde Kullanılan EC Fan, Sürücü ve EC+ Fan Teknolojisi
- Su İşleme, Dağıtım ve Atık Su Yönetim Tesislerinde Sürücü Kullanımı
- Röle ve Trafo Merkezi Testlerinin Temelleri | Webinar
- Chint Elektrik Temel DIN Ray Ürünleri Tanıtımı
- Sigma Termik Manyetik Şalterler ile Elektrik Devrelerinde Koruma
- Elektrik Panoları ve Üretim Teknikleri
- Teknik Servis | Megger Türkiye
ANKET