Elektrik Güç Sisteminde Gerilim Düşmesi ve Kesilmesi
Gerilim düşümü ve kesintiler, tesisata bağlı birçok cihazda problem oluşturmaktadır. Bunlar, çok sık bir şekilde ‘Güç Kalitesi’ problemlerine neden olmaktadır. Birkaç yüz mili saniyelik bir gerilim düşümü veya kesintisi bile zararlı sonuçlar yaratabilir. Bu yazıda gerilim düşümü ve kesintilerini ve bu olaydan kaynaklanacak sorunları inceleyeceğiz.
Gerilim düşümü, bir elektrik güç sisteminde meydana gelen anlık düşüm olarak adlandırılır. Bu olay kısa bir süre sonra gerilimin düzelmesiyle sonuçlanır (IEC 61050-161). Gerilim düşmesi her yarım çevrimde bir çevrim üzerinden kök ortalama kare (rms 1/2), değeri hesaplanarak karakterize edilir ve her bir periyot bir öncekini yarım çevrim aşacak şekildedir.
Eğer, gerilimin ‘rms (1/2)’ değeri, geriliminin referans değerinin 1/3 katının (1/3*Uref ) altına düşerse, bu durum belirli bir x yüzdesi oranında gerilimin değerinde düşme oluşturur. CENELEC EN 50160, IEEE 1159 standartlarına göre bu değer Uref referans geriliminin %10 değişmesi olarak kabul edilir.
Gerilim kesintileri, Uref'in yüzde birkaçına kadar olan özel bir gerilim düşüklüğü türüdür (tipik olarak %1-10 arası). Sadece tek bir zaman parametresi ile karakterize edilirler. Kısa kesintiler bir dakikadan daha az sürer, fakat şebekenin işletme koşullarına bağlı olarak, bu süre üç dakikaya kadar çıkabilir. Bu kesinti türü genellikle, uzun süreli kesintilerden kaçınmak amacıyla tasarlanmış bir devre kesicinin açılması veya otomatikman kapanmasıyla sonuçlanır. Kısa ve uzun süreli kesintiler, hem kaynaklarına göre hem de meydana gelmelerini önlemek veya azaltmak amacıyla getirilen çözümlere göre farklılık gösterirler.
Şekil 1: Gerilim düşmesi dalga formu
► İlginizi Çekebilir : Enerji İletim ve Enerji Otomasyonunun Önemi
Şekil 2: Gerilim düşmesinin rms (1/2) değerinin karakteristiği
Sebepleri
1) Gerilim düşümü ve kısa kesintiler ağırlıklı olarak, gözlem noktasıyla kesinti kaynağı arasındaki elektriksel mesafe oranında azalan bir büyüklükle, şebeke empedansları boyunca bir gerilim düşümü ile sonuçlanan ve yüksek gerilimlere neden olan çok özel durumlarda kendini gösterir.
2) İletim (YG) ve dağıtım (AG veya OG) şebekelerinde veya tesisatın kendisinde meydana gelen hatalar tüm kullanıcılarda gerilimin düşümüne neden olur. Bu düşümün süresi genellikle koruyucu cihazların çalışma süresiyle güçlendirilir. Hataların koruyucu cihazlarla (devre kesiciler, sigortalar) izolasyonu, güç sisteminin hatalı bölümünden beslenen kullanıcıların kesintilere (kısa veya uzun) maruz kalmasına neden olur. Güç kaynağı artık mevcut olmasa bile; şebeke gerilimi, asenkron veya senkron motorların yavaşlamasıyla (0.3'den 1s'ye) elde edilen gerilim veya güç kaynağına bağlı kondansatör banklarının deşarj edilmesiyle açığa çıkan gerilimle de sağlanabilir.
3) Kısa kesintilerin oluşmasının genellikle üç nedeni vardır. Bunlar; otomatik devre kesicisi (hızlı ve/veya yavaş) gibi şebeke üzerinde bulunan otomatik sistemlerin çalıştırılması, trafo ile generatör arasındaki kilitleme düzeneğinin çalıştırılması veya hatların fazlarının tersine çevrilmesinin (enversör) sonucunda oluşan kesintilerdir. Kullanıcılar, geçici veya yarı kalıcı hataların giderilmesi için gerçekleştirilen otomatik kapama (havai veya karışık radyal şebekelerde) veya hatanın yerini tespit etmek için gerçekleştirilen gerilim geri beslemesinin bir saykılı olan aralıklı ark hatalarından kaynaklanan ardışık gerilim düşmesi ve/veya kısa kesintilere maruz kalırlar.
► İlginizi Çekebilir : Elektrik Panoları ve Üretimi
5) Kötü hava şartlarına maruz kalan havai şebekelerde, yeraltı şebekelerine oranla daha fazla sayıda gerilim düşmesi ve kesintisine rastlanır. Ancak, havai veya karışık şebekeler gibi aynı hat sistemine bağlı bir yeraltı kaynağı da havai iletim hatlarını etkileyen hatalar nedeniyle gerilim düşümünden etkilenecektir.
6) Geçici kesintiler (∆T < T/2) ise örneğin kondansatör banklarının enerjilenmesi, bir hatanın sigorta, hızlı bir AG devre kesici ile izolasyonu veya çok fazlı doğrultuculardan gelen komütasyon dişlilerinden kaynaklanabilir.
► Prosesin, zincirdeki herhangi bir öğenin geçici bir süre için kapanmasını tolere edemediği eksiksiz ve kesintisiz üretim hattı (baskı, çelik işleri, kağıt fabrikaları, Petro-kimyasallar, vb.)
► Aydınlatma ve güvenlik sistemleri (hastaneler, havaalanı aydınlatma sistemleri, kamu binaları ve yüksek binalar, vb.)
► Bilgisayarlar (bilgi işlem merkezleri, bankalar, telekomünikasyon, vb.)
► Elektrik santralleri için gerekli olan yardımcı tesisler.
Aşağıdaki paragraflarda gerilim düşüklüklerinin ve kesintilerinin endüstri, hizmet ve konut sektörlerde kullanılan cihazlar üzerindeki önemli etkilerini anlatılacaktır.
Asenkron motorlar
Gerilim düşümü meydana geldiğinde, asenkron motorun torku aniden düşer ve bu da motoru yavaşlatır. Bu yavaşlama, gerilimdeki düşüşün büyüklüğüne ve süresine, döner kütlenin ataletine ve tahrik yükünün tork-devir özelliklerine bağlıdır.
► İlginizi Çekebilir : Elektrik ve Güç Trafoları
Aşırı akımlar ve sonuç olarak meydana gelen gerilim düşüklükleri hem motor üzerinde hem de kontaktörler gibi diğer cihazlar üzerinde de bağlantıların aşınması ve hatta birbirine geçmesi gibi etkiler oluşturabilir. Aşırı akımlar, tesisatın genel ana koruyucu cihazlarının açılmasına ve böylece prosesin kapanmasına neden olabilir.
Senkron motorlar
Senkron motorlar üzerindeki etkiler, asenkron motorlar üzerindeki etkilerle neredeyse aynıdır. Ancak senkron motorlar, genellikle daha büyük olan ataletleri, aşırı tahrik olasılıkları ve torklarının gerilim ile orantılı olması sayesinde stop etmeden daha fazla gerilim düşüklüğüne dayanabilirler (yaklaşık %50). Motor devri sıfıra düştüğünde (stop ettiğinde) motor durur ve tüm karmaşık çalıştırma sürecinin tekrarlanması gerekir.
Hareket elemanları
Doğrudan tesisattan çalıştırılan kontrol cihazları (kontaktörler, gerilim kaybı bobinli devre kesiciler), büyüklüğü standart bir kontaktör için %25 Un.'i aşan gerilim düşüklüklerine karşı duyarlıdır. Gözlenmesi gereken minimum bir gerilim değeri vardır (düşme gerilimi olarak bilinir), aksi takdirde kutuplar ayrılacaktır ve bir gerilim düşüklüğünü (birkaç on milisaniye süren) veya kısa bir kesintiyi uzun (birkaç saat süren) bir kesintiye dönüştürecektir.
Bilgisayarlar
Şekil 3: ITIC eğrisi (bilgisayarların gerilim düşmelerine, kesintilere ve aşırı gerilime karşı dayanımı karakteristiği)
► İlginizi Çekebilir : Türkiye Elektrik Dağıtım Bölgeleri 2
Hız kontrol cihazları
► Motora yeterli gerilimi sağlamak mümkün değildir (tork kaybı, yavaşlama).
► Doğrudan tesisattan beslenen kontrol devreleri çalışamamaktadır.
►Gerilim eski haline döndüğünde aşırı akım meydana gelmektedir (tahrik filtresi kondansatörü yeniden şarj edilmiştir).
► Tek bir fazda gerilim düşüklüğü meydana geldiğinde aşırı akım ve dengesiz akım meydana gelmektedir.
► Enversör işlevi gören DC tahriklerinde kontrol kaybı mevcuttur (tekrar devreye alarak fren yapma)
► Hız kontrol cihazları, %15'ten fazla gerilim düşüklüğü meydana geldiğinde genellikle bozulmaktadır.
Aydınlatma
►YTÜ Elektrik Mühendisliği
- Dünyanın En Görkemli 10 Güneş Tarlası
- Dünyanın En Büyük 10 Makinesi
- 2020’nin En İyi 10 Kişisel Robotu
- Programlamaya Erken Yaşta Başlayan 7 Ünlü Bilgisayar Programcısı
- Üretimin Geleceğinde Etkili Olacak 10 Beceri
- Olağan Üstü Tasarıma Sahip 5 Köprü
- Dünyanın En İyi Bilim ve Teknoloji Müzeleri
- En İyi 5 Tıbbi Robot
- Dünyanın En Zengin 10 Mühendisi
- Üretim için 6 Fabrikasyon İşlemi
- NA8 Serisi Açık Tip Şalter Kurulum Kılavuzu | Chint Turkiye
- NKG3 Dijital Zaman Saati Kurulum Kılavuzu | Chint Türkiye
- NXU Serisi Parafudr Kurulum Kılavuzu | Chint Türkiye
- CJ19 Kondansatör Kontaktörü Kurulum Kılavuzu | Chint Turkiye
- NXZM Serisi Otomatik Transfer Şalterleri Kurulum Kılavuzu | Chint Türkiye
- Nasıl Dönüşür | İleri Dönüşüm
- Nasıl Dönüşür | Çevresel Etki
- Nasıl Dönüşür | Ekolojik Ayak İzi
- Motor Testinin Temelleri | Megger Türkiye | Webinar
- Webinar I Büyüyen Veri, Artan Güç: Sürdürülebilir Çözümler