Elektron Mikroskobu Nasıl Çalışır?
Elektron mikroskopları, elektron ışınlarının kullanıldığı ve maddeyle etkileştiği uygulamalarda kritik rol oynamaktadır. Temel olarak elektronların parçacık ve dalga etkileşiminin bir örneği olan elektron mikroskoplarının detayları yazımızda.
14.04.2015 tarihli yazı 38968 kez okunmuştur.
Elektron mikroskoplarının çalışma ilkesi, De Broglie’nin hipotezine dayanıyor. De Broglie, hipotezinde; doğadaki simetriyi sevmesinden yola çıkarak, ışığın bazen parçacık bazen dalga gibi davranmasından bahsetmiş. Hipoteze göre eğer doğa simetrik ise ışıktaki bu ikili yapı madde için de geçerli olmalıdır. Yani parçacık olarak bahsedilen elektronlar ve protonlar bazı durumlarda dalga gibi davranır. Sonrasında uzun yıllar süren çalışmalar ile hareket eden parçacıkların sahip olduğu dalgalar, ‘Broglie dalgaları’ olarak adlandırıldı.
►İlginizi Çekebilir: Dünya'nın En Büyük Optik Teleskobu
Elektron mikroskobu, elektronların parçacık ve dalga etkileşiminin en ilginç ve önemli örneğidir. Tıpkı ışık ışınlarının yaptığı gibi, elektron ışınları da görüntü oluşumu için kullanılabilmektedir. Işık ışınlarının yönlendirilmesi kırılma ve yansıma ile yapılırken, elektron ışınlarının yönlendirilmesi elektrik ve manyetik alan ile yapılabilmektedir. Böylelikle elektron ışınları da tek bir noktada odaklanabilmektedir.
Çok kısa dalga boylarına sahip olan hızlandırılmış elektronlar, daha fazla ayırma gücü ve daha fazla büyütme oranları sağlar. Standart elektron mikroskoplarında ayırma gücü birkaç nanometre (nm) mertebesindedir.
Elektron ve optik mikroskopların genel bileşenleri benzerdir. Elektron mikroskoplarında, çeşitlerine göre odaklama merceği farklıdır. Örneğin, transmisyon elektron mikroskobunda (TEM) ışın çok ince bir merceğe gönderilip, manyetik objektif merceği ile odaklanmaktadır. Işık mikroskoplarında 2000x'e kadar büyütme yapılabilirken, elektron mikroskoplarında bu oran 100.000x'lere kadar çıkmaktadır. Ayrıca elektron mikroskopları için kullanılan örnekler çok ince olmalıdır ve mercekler görüntüyü floresan veya fotografik filme düşürmelidir. Kalın örnekler için ise ışınların yüzeyden yansıması ile incelenebilmektedir. Bu tip incelemer tamalı elektron mikroskobu (SEM) ile yapılabilmektedir.
SEM'de ışın örnek yüzeyi tarar ve yüzeyden yansıyan elektronlar numuneye göre birkaç yüz volt pozitif gerilimde tutulan anot ile toplanır. Anottaki akım yükseltilir ve katot ışın tüpündeki mikroskop ışını ile eş zamanlı taranan elektron ışınlarını modüle etmek için kullanılır. Böylelikle katot ışın tüpü numunenin büyütülmüş görüntüsünü alır. Işınların numunenin içinden geçmesine gerek olmadığı için SEM'de numune kalın olabilir.
Kaynak:
►Wikipedia
►Jic
►Tübitak Yayınları
YORUMLAR
Aktif etkinlik bulunmamaktadır.
- Dünyanın En Görkemli 10 Güneş Tarlası
- Dünyanın En Büyük 10 Makinesi
- 2020’nin En İyi 10 Kişisel Robotu
- Programlamaya Erken Yaşta Başlayan 7 Ünlü Bilgisayar Programcısı
- Üretimin Geleceğinde Etkili Olacak 10 Beceri
- Olağan Üstü Tasarıma Sahip 5 Köprü
- Dünyanın En İyi Bilim ve Teknoloji Müzeleri
- En İyi 5 Tıbbi Robot
- Dünyanın En Zengin 10 Mühendisi
- Üretim için 6 Fabrikasyon İşlemi
- DrivePro Yaşam Döngüsü Hizmetleri
- Batarya Testinin Temelleri
- Enerji Yönetiminde Ölçümün Rolü: Verimliliğe Giden Yol
- HVAC Sistemlerinde Kullanılan EC Fan, Sürücü ve EC+ Fan Teknolojisi
- Su İşleme, Dağıtım ve Atık Su Yönetim Tesislerinde Sürücü Kullanımı
- Röle ve Trafo Merkezi Testlerinin Temelleri | Webinar
- Chint Elektrik Temel DIN Ray Ürünleri Tanıtımı
- Sigma Termik Manyetik Şalterler ile Elektrik Devrelerinde Koruma
- Elektrik Panoları ve Üretim Teknikleri
- Teknik Servis | Megger Türkiye
ANKET